

Design and Synthesis of Novel 2,3-Dihydro-1*H*-isoindoles with High Affinity and Selectivity for the Dopamine D₃ Receptor

Nigel E. Austin, Kim Y. Avenell, Izzy Boyfield, Clive L. Branch,* Michael S. Hadley, Phillip Jeffrey, Christopher N. Johnson, Gregor J. Macdonald, David J. Nash, Graham J. Riley, Alexander B. Smith, Geoffrey Stemp, Kevin M. Thewlis, Antonio K. K. Vong and Martyn D. Wood

SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK

Received 24 October 2000; revised 18 December 2000; accepted 8 January 2001

Abstract—Starting from the tetrahydroisoquinoline SB-277011 **1**, a novel series of 5-substituted-2,3-dihydro-1*H*-isoindoles has been designed. Subsequent optimisation resulted in identification of **19**, which has high affinity for the dopamine D_3 receptor (p K_i 8.3) and ≥100-fold selectivity over other aminergic receptors. In rat studies **19** was brain penetrant with an excellent pharmacokinetic profile (oral bioavailability 77%, $t_{1/2}$ 5.2 h). © 2001 Elsevier Science Ltd. All rights reserved.

All clinically effective antipsychotic agents share the property of dopamine D₂ and D₃ receptor antagonism. Since these drugs occupy both D_3 and D_2 receptors at clinical doses, their antipsychotic effects could be mediated via D₂ and/or D₃ receptors. Blockade of D₂ receptors in the striatum leads to serious extrapyramidal sideeffects, resulting in poor patient compliance and therefore poor control of the disease. Interestingly, dopamine D₃ receptors are preferentially located in limbic brain regions, such as the nucleus accumbens, where dopamine receptor blockade has been associated with antipsychotic activity. Consequently, a selective dopamine D₃ receptor antagonist offers the potential for an effective antipsychotic therapy, free of the serious side-effects of currently available drugs. 1–4 The presence of the dopamine D₃ receptor in projection regions of the mesocorticolimbic system also suggests a potential therapeutic role in reinforcement processes and drug abuse.⁵

Recent reports from these laboratories have described the design and synthesis of SB-277011 1, a potent and selective dopamine D₃ antagonist.⁶ As part of our continuing studies around SB-277011 1, it was important to establish the effect on D₃ affinity and selectivity of replacing the tetrahydroisoquinoline with a 2,3-dihydro-1*H*-isoindole. Examination of molecular models sug-

gested a good overlap between the 6-substituted-tetra-

The synthesis of the starting 5-substituted-2,3-dihydro-1*H*-isoindoles **3b**-**e** is outlined in Scheme 1. Preparation of 5-methanesulfonyloxy- and 5-cyano-2,3-dihydro-1*H*-isoindoles **3b,c** was accomplished via the key 5-hydroxy intermediate **4**, derived from 5-methoxy-2,3-dihydro-1*H*-isoindole **3a**⁷ by sequential *O*-demethylation and *N*-protection. Reaction of **4** with methanesulfonyl chlo-

1 n=1 SB-277011

D₃ pKi 8.0; D₂ pKi 6.0

hydroisoquinoline of $\mathbf{1}$ and 5-substituted-2,3-dihydro-1H-isoindoles, such as $\mathbf{2}$ (Fig. 1). However, the modelling study also indicated the different spatial requirements of the 2,3-dihydro-1H-isoindole, which might adversely affect dopamine D_3 affinity. Accordingly, a series of 5-substituted-2,3-dihydro-1H-isoindoles, related to $\mathbf{1}$, has been synthesised and the structure—activity relationship investigated, the results of which are disclosed in this paper.

^{*}Corresponding author. Tel.: +44-1279-627734; fax: +44-1279-627896; e-mail: clive 1 branch@sbphrd.com

ride or trifluoromethanesulfonic anhydride gave the sulfonates **5** and **6**, respectively. Palladium catalysed reaction of **6** with Zn(CN)₂ furnished the 5-cyano derivative **7**. Deprotection of **5** and **7** then afforded the required 2,3-dihydro-1*H*-isoindoles **3b,c**. The 5-trifluoromethyl-2,3-dihydro-1*H*-isoindole **3e** was obtained from the 5-bromo intermediate **8**⁷ by reaction with potassium trifluoroacetate in DMF, followed by *N*-detosylation of **9** with 48% hydrobromic acid in the presence of phenol and propionic acid. Similarly, **8** afforded the 5-bromo analogue **3d**.⁷

Figure 1. Overlap of 5-cyano-2,3-dihydro-1*H*-isoindole (cyan) with SB-277011 (magenta).

Transformation of the 2,3-dihydro-1*H*-isoindoles **3a**–e into the final compounds **2** and **13**–**19** is outlined in Scheme 2. Thus, reductive amination of the aldehyde **10**⁶ with the requisite 5-substituted-2,3-dihydro-1*H*-isoindole **3a**–e in the presence of NaBH(OAc)₃ afforded the corresponding protected amines **11a**–e. *N*-Deprotection with TFA, followed by EDC-HOBt mediated coupling of the resulting amines **12a**–e with an appropriate acid provided the amides **2** and **13**–**19**. All compounds were purified by chromatography and isolated as their hydrochloride salts.

For direct comparison with the tetrahydroisoquinoline, the first derivative prepared and evaluated was the 5-cyano-2,3-dihydro-1H-isoindole **2**. Albeit less potent than the corresponding tetrahydroisoquinoline SB-277011 **1**, the 5-cyano-2,3-dihydro-1H-isoindole analogue **2** had encouraging affinity for the D₃ receptor (p K_i 7.2) with 40-fold selectivity over the D₂ receptor (Table 1). By replacement of the 4-quinolinyl group by a 2-indolyl

 $\begin{array}{l} \textbf{Scheme 1.} \ \ Reagents: (i) \ \ 48\% \ \ HBr, \ 100\ ^{\circ}\text{C}, \ 2\ h, \ 80\%; \ (ii) \ \ (Boc)_2O, \ NEt_3, \ CH_2Cl_2, \ rt, \ 16\ h, \ 40\%; \ (iii) \ \ MeSO_2Cl, \ NEt_3, \ CH_2Cl_2, \ rt, \ 16\ h, \ 70\%; \ (iv) \ \ TFA, \ CH_2Cl_2, \ 40\ ^{\circ}\text{C}, \ 0.5\ h, \ 90\%; \ (v) \ \ (CF_3SO_2)_2O, \ NEt_3, \ CH_2Cl_2, \ -20\ ^{\circ}\text{C}-rt, \ 6\ h, \ 70\%; \ (vi) \ \ Zn(CN)_2, \ Pd(PPh_3)_4, \ DMF, \ 100\ ^{\circ}\text{C}, \ 4\ h, \ 90\%; \ (vii) \ \ CF_3CO_2K, \ CuI, \ DMF-PhMe, \ 110\ ^{\circ}\text{C}, \ 1.5\ h, \ 90\%; \ (viii) \ 48\% \ \ HBr, \ PhOH, \ EtCO_2H, \ 150\ ^{\circ}\text{C}, \ 6\ h, \ 65\%. \end{array}$

NH'Boc

NHOR2

NHCOR2

R1

2, 13-19

R1:
$$\mathbf{a} = \mathsf{OMe}$$
; $\mathbf{b} = \mathsf{OSO}_2\mathsf{Me}$; $\mathbf{c} = \mathsf{CN}$; $\mathbf{d} = \mathsf{Br}$; $\mathbf{e} = \mathsf{CF}_3$

Scheme 2. Reagents: (i) NaBH(OAc)₃, ClCH₂CH₂Cl, rt, 16 h, 55–85%; (ii) TFA, CH₂Cl₂, 40 °C, 0.5 h, 90%; (iii) EDC, HOBt, CH₂Cl₂, rt, 16 h, 50–90%.

group, as in compound 13, D₃ affinity was slightly increased and 100-fold selectivity over the D₂ receptor was demonstrated. It had previously been observed in the 6-cyano-tetrahydroisoquinoline series that a 4fluorocinnamide moiety gave higher dopamine D₃ receptor affinity than the 4-quinolinylcarboxamide group. 6,10 This modification to the acylamino moiety identified the trans-cinnamide 14, which had high affinity for the D_3 receptor with a p K_i of 7.9. Unfortunately, D2 receptor affinity also increased, with a slight reduction in selectivity to 50-fold. Variation of the phenyl substituent identified the 3-methoxycinnamide 15, which firmly established that both high affinity (p K_i 8.0) for the D₃ receptor and 100-fold selectivity over the D₂ receptor was achievable in this series. On crossscreening against other aminergic receptors, cinnamide 15 was shown to be only 50-fold selective over the 5- HT_{1D} receptor. The reduced selectivity over the 5- HT_{1D} receptor observed in the 5-cyano-2,3-dihydro-1*H*-isoindole series was in contrast to the 6-cyano-tetrahydroisoguinoline series⁶ and may result from the

Table 1. Affinities (pK_i) of substituted 2,3-dihydro-1*H*-isoindole derivatives at dopamine D_3 and D_2 receptors

Compounda	\mathbb{R}^1	\mathbb{R}^2	D_3^b	D_2^b	Selectivity
SB-277011	_	_	8.0	6.0	100
2	NC-		7.2	5.6	40
13	NC-	A P	7.6	5.6	100
14	NC-		7.9	6.2	50
15	NC-	ОМе	8.0	6.0	100
16	F_3C-	F	8.0	6.4	40
17	Br-	F	8.5	7.0	35
18	MeO-	F	8.1	6.7	25
19	MeSO ₂ O-		8.3	6.3	100

^aAll new compounds gave satisfactory analytical and/or mass spectral data.⁸

subtly different spatial requirements of the 2,3-dihydro-1*H*-isoindole and tetrahydroisoquinoline rings (see Fig. 1). With the aim of maintaining D_3 affinity and improving the overall selectivity, alternative 5-substituted-2,3-dihydro-1*H*-isoindole derivatives investigated in the 4-fluorocinnamide series. While the 5-trifluoromethyl- and 5-methoxy-analogues, 16 and 18 respectively, had similar D₃ affinity to the 5-cyano analogue 14, the 5-bromo analogue 17 had increased D₃ affinity with a p K_i of 8.5. These modifications however, resulted in a similar enhancement of D_2 receptor affinity and therefore only 25–40-fold selectivity over D_2 . In previous studies on a series of 2-aminotetralin derivatives, replacement of methoxy by methanesulfonyloxy had maintained D₃ affinity and enhanced D₂ selectivity. 11 In agreement with this observation 19 demonstrated excellent affinity (p K_i 8.3) for the D₃ receptor, and 100-fold selectivity over the D₂ receptor. Furthermore, 19 had an excellent cross-screening profile, being 270-fold selective over the 5-HT_{1D} receptor (p K_i 5.9) and ≥200-fold selective over other aminergic receptors $(pK_i 5-HT_{1A} 5.5, 5-HT_{1B} 5.3, 5-HT_{2A} < 5.3, 5-HT_{2B}$ $<6.0,\ 5\text{-HT}_{2C}\ <5.1,\ 5\text{-HT}_{6}\ <5.0,\ 5\text{-HT}_{7}\ <5.4,\ \alpha_{1B}$ < 5.3). Studies in the in vitro functional assay⁹ showed 19 to be a potent antagonist at the D₃ receptor with a pK_b of 8.3. In vivo evaluation in the rat demonstrated that 19 was centrally penetrant (brain:blood 0.5:1) and had an excellent pharmacokinetic profile, with high oral bioavailability (77%), low clearance (CL_b 14 mL/min/ kg) and long terminal half-life $(t_{1/2} 5.2 h)$.¹²

Conclusions

Based on the tetrahydroisoquinoline SB-277011 1, a novel series of 5-substituted-2,3-dihydro-1H-isoindoles has been designed and structure—activity relationships investigated. From this study, the 5-methanesulfonyloxy derivative 19, with a binding affinity (p K_i 8.3) for the D_3 receptor 2-fold higher than SB-277011 1 and with similar 100-fold selectivity over the D_2 receptor, was identified. Furthermore it has been shown that 19 was \geq 200-fold selective over a package of 63 receptors and ion channels. Additional studies established that 19 had an exceptional pharmacokinetic profile and was also brain penetrant, and therefore represents an excellent pharmacological tool for the further characterisation of the role of the dopamine D_3 receptor in the central nervous system.

References and Notes

- 1. Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.; Schwartz, J.-C. *Nature* **1990**, *347*, 146.
- 2. Schwartz, J.-C.; Levesque, D.; Martres, M.-P.; Sokoloff, P. *Clin. Neuropharmacol.* **1993**, *16*, 295.
- 3. Shafer, R. A.; Levant, B. *Psychopharmacology* **1998**, *135*, 1. 4. Joyce, J. N.; Meador-Woodruff, J. H. *Neuropsychopharmacology* **1997**, *16*, 375.
- 5. Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.; Wermuth, C. G.; Schwartz, J.-C.; Everitt, B. J.; Sokoloff, P. *Nature* **1999**, *400*, 371.

^bAll values represent the mean of at least 3 experiments, each within 0.3 of the mean.⁹

 $[^]c Selectivity$ is defined as the antilogarithm of the difference between D_3 and $D_2 \, p \textit{K}_i$ values.

- 6. Stemp, G.; Ashmeade, T.; Branch, C. L.; Hadley, M. S.; Hunter, A. J.; Johnson, C. N.; Nash, D. J.; Thewlis, K. M.; Vong, A. K. K.; Austin, N. E.; Jeffrey, P.; Avenell, K. Y.; Boyfield, I.; Hagan, J. J.; Middlemiss, D. N.; Reavill, C.; Riley, G. J.; Routledge, C.; Wood, M. J. Med. Chem. 2000, 43, 1878
- 7. Yatsunami, T.; Yazaki, A.; Inoue, S.; Yamamoto, H.; Yokomoto, M.; Nomiyama, J.; Noda, S. EP 0343560, 1989; *Chem. Abstr.* **1989**, *112*, 235326.
- 8. ¹H NMR spectra were recorded at 250 MHz in CDCl₃ as solvent. Compound **19** mp 264–266 °C (HCl salt); (Found: C, 59.6; H, 6.1; N, 5.3; m/z 487 (MH⁺). C₂₆H₃₁FN₂O₄S requires C, 59.7; H, 6.2; N, 5.4%, M 486); ¹H NMR (free base): δ 1.05–1.30 (m, 5H), 1.40–1.54 (m, 2H), 1.80–1.90 (m, 2H), 2.00–2.15 (m, 2H), 2.74 (t, J=7 Hz, 2H), 3.12 (s, 3H), 3.86 (m, 1H), 3.90 (m, 4H), 5.45 (d, J=8 Hz, 1H), 6.27 (d, J=16 Hz, 1H), 7.00–7.20 (m, 5H), 7.47 (m, 2H), 7.57 (d, J=16 Hz, 1H).
- 9. Compounds were evaluated in binding assays using displacement of 125 I-iodosulpride from human D_3 and D_2 receptors, expressed in CHO cells. Functional activity of compound 19 was determined in vitro using microphysiometry. Apparent p K_b values were D_3 (8.3) and D_2 (6.7). For details see Boyfield,

- I.; Brown, T. H.; Coldwell, M. C.; Cooper, D. G.; Hadley, M. S.; Hagan, J. J.; Healy, M. A.; Johns, A. J.; King, R. J.; Middlemiss, D. N.; Nash, D. J.; Riley, G. J.; Scott, E. E.; Smith, S. A.; Stemp, G. J. Med. Chem. 1996, 39, 1946.
- 10. Austin, N. E.; Avenell, K. Y.; Boyfield, I.; Branch, C. L.; Coldwell, M. C.; Hadley, M. S.; Jeffrey, P.; Johns, A.; Johnson, C. N.; Nash, D. J.; Riley, G. J.; Smith, S. A.; Stacey, R. C.; Stemp, G.; Thewlis, K. M.; Vong, A. A. K. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 179.
- 11. Boyfield, I.; Coldwell, M. C.; Hadley, M. S.; Johnson, C. J.; Riley, G. J.; Scott, E. E.; Stacey, R.; Stemp, G.; Thewlis, K. M. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1995.
- 12. CNS penetration at steady-state was investigated in the rat. The compound was dissolved in 2% (v/v) DMSO in 5% (w/v) dextrose aq and administered at a constant infusion rate over 12 h at a target dose rate of 0.3 mg free base/kg/h. Blood samples were removed during the latter part of the infusion to confirm steady-state blood concentrations. Blood and brain samples were analysed by LC/MS/MS. Values for blood clearance (CLb) were determined according to the relationship CLb=infusion rate/steady-state blood concentration (Css).